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Abstract
We derive the RG flow equations of the sliding Luttinger liquid perturbed by
charge-density-wave (CDW) and superconducting (SC) operators. Using them
we study the phase diagram of an array of XXZ spin chains coupled by Ising
terms. In the weak-coupling regime we find a new class of self-dual and
antiself-dual unstable fixed points.

PACS numbers: 71.10.Hf, 75.10.Jm, 75.30.Gw, 74.20.Mn

1. Introduction

The Luttinger liquid (LL) is the key concept to describe interacting electrons in one dimension.
The collective nature of the excitations, the spin-charge separation and the power-law behaviour
of correlators with anomalous exponents are some of its distinctive features, in contrast to
the Fermi liquid theory [1]. Considerable theoretical activity in the last few years has been
devoted to the search of non-Fermi liquid theories in dimensions higher than one, specially
in 2D, due to its possible connection with the high-Tc superconductors and another strongly
correlated system.

A natural path to realize a non-Fermi liquid has been to couple arrays of 1D Luttinger
liquids forming ladders and 2D planes. However, the general consensus has been, until
recently, that 2D arrays of LL are unstable to the formation of crystal, superconducting or
2D Fermi liquid states [2]. An alternative to these ‘no-go theorems’ has been proposed lately
using the concept of sliding Luttinger liquid (SLL), also called smectic non-Fermi liquid [3–5].

These works were partially motivated by the Anderson proposal of confinement of
excitations in the Luttinger liquids [6] and have a classical analogue in the stacks of 2D
XY models coupled by gradient interactions [7]. The SLL model may also be relevant to the
stripe phases of the quantum Hall effect and the cuprates.

The sliding Luttinger liquid is the fixed point of a gaussian Hamiltonian which treats on
equal footing the individual Luttinger Hamiltonians of the stripes and the density–density and
current–current interstripe interactions [3, 4]. Using bosonization techniques one can regard
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the SLL as a set of decoupled LL characterized by a sound velocity v(q⊥) and a Luttinger
coupling K(q⊥) which depend on the tranverse momentum q⊥ across the stripes. The gaussian
nature of the SLL-fixed point allows a simple derivation of the scaling dimensions of the single-
particle (SP), charge-density (CDW) and superconducting (SC) order parameters, in terms of
the SLL function K(q⊥) [3, 4]. These scaling dimensions have been used to study the stability
of the SLL under various perturbations, finding rich phase diagrams where the SLL phase
survives in the vicinity of CDW, SC and Fermi liquid phases [3–5]. The perturbative RG
analysis performed in the latter references takes into account the running of the coupling
constants of the perturbations to first order, while the Luttinger functions K(q⊥) and v(q⊥)

stay constant. It is however well known that in certain situations, as in the presence of marginal
perturbations, one has also to consider the renormalization of the Luttinger parameters in a
RG in the style of Kosterlitz–Thouless (KT) [8]. This is, for example, the case of the Hubbard
model at half filling where the Umklapp operator becomes marginally relevant for a repulsive
Hubbard constant, leading to a charge gap in the low-energy spectrum.

The aim of this paper is to derive the one-loop RG equations of the SLL for the coupling
constants and the SLL functions, and study some of their consequences in a model consisting
of arrays of XXZ spin chains coupled by Ising terms. The latter model has been treated in the
past with bosonization [12], mean field [13] and variational methods [14], which predict the
existence of large regions in parameter space where the phase is either Ising-like or XY-like,
corresponding respectively to the smectic crystal and the smectic metallic phases of [3, 4].

On more general grounds we also analyse the stability of the spinless SLL under relevant
and marginal CDW and SC perturbations, finding new non-gaussian fixed points. Our results
are related to those obtained by Boyanovsky and Holman [9] who have studied a class of
extended sine-Gordon models based on simply-laced Lie groups (see also [10]).

2. The sliding Luttinger model

Let us consider an array of N spinless Luttinger stripes with phase fields for the density
fluctuations φa (a = 1, . . . , N) and Euclidean Lagrangian

L0 =
N∑

a=1

K0

2

[
1

v0
(∂tφa)

2 + v0(∂xφa)
2

]
(1)

where K0 is the inverse of the standard Luttinger parameter (K0 > 1 for repulsion) and v0 is
the sound velocity which we scale to 1. The charge density fluctuations ja

0 and the charge
currents ja

1 are given by the bosonization equation ja
µ = 1

π
εµν∂

νφa . Hence the density–density
and current–current interactions among the stripes are also quadratic in the derivatives of the
bosonic fields and, together with (1), define the sliding Luttinger Lagrangian [3, 4]

LSLL = 1

2

N∑
a,b=1

[
∂tφaK

J
a,b∂tφb + ∂xφaK

ρ

a,b∂xφb

]
(2)

where K
J,ρ

a,b = δa,bK0 +K̄
J,ρ

a,b are N ×N matrices whose off-diagonal elements are given by the
interstripe current–current and density–density interactions. The SLL model can alternatively
be formulated in the dual variables θa , which are the phase fields of the superconducting
fluctuations. The SLL Lagrangian (2) becomes [3–5]

LSLL = 1

2

N∑
a,b=1

[
∂t θa

(
K−1

ρ

)
a,b

∂tθb + ∂xθa

(
K−1

J

)
a,b

∂xθb

]
(3)

where K−1
J,ρ are the inverse matrices of KJ,ρ . Both equations (2) and (3) exhibit the

smectic or sliding symmetries φa → φa + αa and θa → θa + βa , where αa and βa are
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constants, which prevents the lock-in of the charge-density-wave and superconducting order
parameters of the individual stripes [3, 4]. Assuming periodic boundary conditions across
the stripes and translational invariance along them, one can perform the Fourier transform:
φa = 1√

N

∑
q⊥ eiq⊥aφq⊥ ,KJ,ρ(q⊥) = ∑

a eiq⊥aK
J,ρ

1,1+a in order to bring the SLL Lagrangian (2)
into the form

LSLL = 1

2

∑
q⊥

K(q⊥)

[
1

v(q⊥)
|∂tφq⊥ |2 + v(q⊥)|∂xφq⊥|2

]
(4)

where K(q⊥) =
√

KJ (q⊥)Kρ(q⊥) is the (inverse) Luttinger parameter and v(q⊥) =√
Kρ(q⊥)/KJ (q⊥) is the sound velocity of the q⊥ mode. In the dual variables θq⊥ the

Lagrangian has the same form as equation (4) with the replacement K(q⊥) → 1/K(q⊥). The
scaling dimension of a generic vertex operator V

φ

β = exp
(
i
∑

a βaφa

)
is given by [3, 4]

�
φ

β =
∫

q⊥

1

4πK(q⊥)

(∑
a

β2
a + 2

∑
a<b

βaβb cos(q⊥(a − b))

)
(5)

where
∫
q⊥

= ∫ π

−π

dq⊥
2π

. Similary, a vertex operator in the dual variables, i.e. V θ
β =

exp
(
i
∑

a βaθa

)
, has a scaling dimension �θ

β given by the formula (5) with K(q⊥) replaced
by its inverse. The interaction Lagrangian is given by the pair hopping (SC) and particle–hole
(CDW) operators [3, 4],

Lint =
∫

d2x

(2πa0)2

∑
a,n>0

[gCD,n cos β(φa − φa+n) + gSC,n cos β(θa − θa+n)] (6)

where a0 is the lattice spacing and β2 = 2πM with M an integer. For the charge modes of
spin-gapped systems [3] one has M = 1, while for spinless fermions [4] one has M = 2.

In the latter references the stability of the perturbed SLL was studied in terms of the
relevance or irrelevance of the CDW and SC operators (6), given by their scaling dimensions.
There are, however, cases where one has to consider the renormalization of the functions
K(q⊥) and v(q⊥), for example when the CDW and SC operators become marginal. This
problem is addressed in the next section.

3. RG equations for the SLL model

Equations (2) and (6) define a multicomponent sine-Gordon model which can be renormalized
using operator product expansion (OPE) techniques [11]. This renormalization procedure
is simplified if we assume that the sound velocity v(q⊥) is the same for all the modes
and set it equal to 1. To present our results we shall expand the Luttinger function as
K(q⊥) = 1 + k0 +

∑
n>0 kn cos(q⊥n) and assume that the parameters kn are small. The

one-loop RG equations for the model with Lagrangian LSLL + Lint are given by

dk0

ds
= M

(4π)2

∑
n>0

(
g2

CD,n − g2
SC,n

)
dkn

ds
= − M

(4π)2

(
g2

CD,n − g2
SC,n

)
(n > 0)

(7)
dgCD,n

ds
=

(
2 − M + M

(
k0 − kn

2

))
gCD,n − 1

4π

∂N (gCD)

∂gCD,n

dgSC,n

ds
=

(
2 − M − M

(
k0 − kn

2

))
gSC,n − 1

4π

∂N (gSC)

∂gSC,n
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where N (g) is the cubic polynomial

N (g) =
∑

n,m>0

gngmgn+m (8)

which encodes the OPE of the CDW and SC operators appearing in (6). From (7) the RG
conservation of K(q⊥ = 0) = 1 +

∑
n�0 kn follows.

The RG equation (7) can be easily generalized to include other types of operators such
as the Umklapp ones, i.e. cos β(φa + φb) and their duals, i.e. cos β(θa + θb). This has been
partially done by Boyanovsky and Holman (BH) for a family of extended sine-Gordon models
based on simply-laced Lie algebras G [9]. BH have considered all the vertex operators of the
form exp(βαa · φ) and their duals exp(βαa · θ), where αa are all the roots of G. However, the
kinetic term in [9] does not include inter-chain forward scattering terms, i.e. kn = 0 (∀n > 0),
so that only k0 is allowed. This imposes severe restrictions on the coupling constants gαa

and
their duals g̃αa

in order to maintain renormalizability, so that one is left only with a single
coupling constant g and its dual g̃, apart from discrete choices of signs. In this sense our work
generalizes the approach of BH placing it in the framework of SLL models. Conversely, the
use of group theoretical methods may help us in understanding the renormalizability properties
of the SLL models.

In this respect, it may be worth mentioning that the model defined by equations (2) and
(6) is connected to the Lie group SO(2N), where N is the number of legs. This group has
N(2N − 1) generators which have the following meaning. The Cartan subalgebra, which
has dimension N, gives the bosons, {φa}Na=1, of the model. The N(N − 1) roots of the form
ηi,j = (ei − ej )/

√
2 give the CDW or the SC operators in (6) (ei = (0, . . . , 1, . . . , 0) is a

N-component unit vector). Finally, the N(N − 1) roots of the form ±λi,j = ±(ei + ej )/
√

2
correspond to Umklapp operators. Dropping the latter type of operators reduces the symmetry
from SO(2N) to its maximal compact subgroup SU(N) ⊗ U(1).

4. Arrays of coupled XXZ spin chains

As a first application of the previous results, let us consider a system of coupled XXZ spin
chain Hamiltonians via Ising and spin-pair-flipping terms [12, 14],

H =
L∑

i=1

N∑
a=1

[
−J

2

(
S+

i,aS
−
i+1,a + S−

i,aS
+
i+1,a

)
+ JzS

z
i,aS

z
i+1,a + J ′

zS
z
i,aS

z
i,a+1

+ J ′
XY

(
S+

i,aS
+
i+1,aS

−
i,a+1S

−
i+1,a+1 + hc

)]
. (9)

This model can be Jordan–Wigner transformed into a spinless fermion Hamiltonian, i.e.
M = 2, which upon bosonization becomes at half-filling [12],

H =
N∑

a=1

∫
dx

[
u

2K0
π2

a +
uK0

2
(∂xφa)

2 +
2Jza0

(2πa0)2
cos

√
16πφa

+
J ′

za0

π
∂xφa∂xφa+1 +

8J ′
XYa0

(2πa0)2
cos

√
4π(θa − θa+1)

+
2J ′

za0

(2πa0)2
(cos

√
4π(φa + φa+1) − cos

√
4π(φa − φa+1))

]
(10)
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where u = Ja0(1 + 2Jz/(πJ ) and K0 = 1 + 2Jz/(πJ ) for |Jz| � J . The gaussian terms in
(10) yield a SLL model (2) with

KJ
a,b = δa,bK0 K

ρ

a,b = δa,bK0 +
J ′

z

π
δ|a−b|,1 (11)

where the time variable and the exchange couplings are measured in units of u and J ,
respectively. In the weak-coupling regime |Jz| � J , the SLL function K(q⊥) is close to 1.
Consequently, the intra-chain Umklapp couplings cos

√
16πφa have dimension � ∼ 4 and

hence can be neglected, as is the case of decoupled single chains. On the other hand, the CDW,
SC and Umklapp inter-chain couplings are marginal and one has to consider their running
together with that of the SLL functions.

To simplify matters we shall neglect in what follows the Umklapp term, which is absent
away from half-filling, and the SC term which have not been considered in [12, 14]. The
effective model which is left is given by the following set of non-vanishing couplings,

M = 2 k0 = 2Jz

π
k1 = J ′

z

π
gCD,1 = −2J ′

z (12)

and the RG equations (7) become

dk0

ds
= 1

8π2

∑
n>0

g2
CD,n

dkn

ds
= − 1

8π2
g2

CD,n (n > 0) (13)

dgCD,n

ds
= (2k0 − kn)gCD,n − 1

4π

∂N (gCD)

∂gCD,n

.

Let us first consider the simplest case where only k0 and gCD,1 are non-vanishing. A truncation
of equations (13), written in the variables x = −2k0 and y = gCD,1/(2π), gives

dx

ds
= −y2 dy

ds
= −xy. (14)

These are the well-known Kosterlitz–Thouless RG equations of the XY model [8, 11],
whose RG trajectories are hyperbolas which end up at infinity provided |y| > x. Using
equations (12), the latter inequality becomes |J ′

z| > −4Jz. This condition coincides with the
one derived in [12] for the existence of an Ising phase in the XXZ + Ising model (see figure 1).
In the weak-coupling regime of the XY model, the parameter y flows to zero and x flows to
the line x > 0 of stable fixed points. In [12], the inter-chain forward scattering couplings were
not taken into account. To do so, we have solved numerically equations (13) with the initial
conditions given by equation (12). The phase diagram is shown in figure 1. We see that the
boundary separating the Ising and XY regions, which in the previous computation was given
by J ′

z = ±4|Jz|, Jz < 0, is still linear but the slopes have been modified to J ′
z = 5.828|Jz|

and J ′
z = −1.750|Jz| with Jz < 0. This is an effect of the inclusion of the forward scattering

terms kn and the additional coupling constants gCD,n.
In the XY region all the couplings gn flow to zero, while the couplings kn flow to a fixed

value. Thus in this region the low energy of the XXZ + Ising model is described by a SLL
model. As can be seen from figure 1 a necessary condition to achieve a XY phase is to have
a ferromagnetic intra-chain coupling Jz < 0, which agrees with the results of [4] concerning
the proximity of the stable SLL to the isotropic ferromagnetic point where the boson stiffness
K0 vanishes.
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ISING – AF
XY–AF

z4J

J’z

Figure 1. Phase diagram of the XXZ + Ising model. The shadow region denotes the XY-AF phase
and it is given by −1.750|Jz | < J ′

z < 5.828|Jz | and Jz < 0. The region inside the dotted lines,
−4|Jz| < J ′

z < 4|Jz | and Jz < 0, is obtained by neglecting the inter-chain forward scattering
terms kn (n � 1) and the higher-order couplings gCD,n (n > 1).

5. Fixed points of the SLL model

Another application of equations (7) is the search for non-trivial fixed points. This may happen
whenever the couplingsgCD,n and gSCn

are either relevant, i.e. M < 2, or marginal, i.e. M = 2.
We shall consider these two cases separately.

5.1. Case M < 2

Equations (7) have the following interesting property. Let us suppose that gCD,n = gSC,n and
that k0 = kn/2 for all values of n > 0 at a given scale, say s = 0. Then the self-duality
conditions gCD,n = gSC,n are preserved by the RG flow, and kn (∀n � 0) stay constant
and drop from the RG equations of gCD,n = gSC,n. The RG equations for the couplings
gn ≡ gCD,n/(2π) = gSC,n/(2π) are given by

dgn

ds
= gnδ − 1

2

∂N (g)

∂gn

(15)

where δ = 2 − M . A similar observation was made by BH for the extended sine-Gordon
models mentioned above [9]. Equation (15) can be more conveniently written in terms of the
matrix ga,b = g|a−b|, ga,a = 0 as

dga,b

ds
= ga,bδ − 1

2

N∑
c=1

ga,cgc,b. (16)

We can further assume that all the couplings are actually the same, i.e. gn = g, so that (16)
yields

dg

ds
= gδ − N − 2

2
g2. (17)

This equation has a stable fixed point g = g∗ given by

g∗ = 2δ

N − 2
(18)

which is analogue to the ones found by BH, under the asumption that all the couplings are the
same [9].
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g +– 0 g

Figure 2. RG flow of the coupling constants g(q⊥).

We can look for the general fixed points of equation (16) without imposing the condition
that all gn are equal. To do so we introduce the Fourier transform g(q⊥) = ∑

a eiq⊥ag1,1+a and
write equation (16) as

dg(q⊥)

ds
= g(q⊥)δ − 1

2
g(q⊥)2 +

1

2
A

(19)
A = 1

N

∑
q⊥

g(q⊥)2.

Note that
∑

q⊥ g(q⊥) = 0 because ga,a = 0. Equation (19) seems to imply that the RG flows
of the modes of g(q⊥) are independent. However, this is not true due to the term A which
couples all the modes. For each value of q⊥ the fixed points of (19) are given by one of the
roots g± of the quadratic equation g(q⊥)δ − 1

2g(q⊥)2 + A = 0, namely,

g± = δ ±
√

δ2 + A. (20)

Let us denote by n+ and n− the number of q ′
⊥ for which g(q⊥) is either g+ or g−. One has of

course n+ + n− = N . Introducing (20) into the definition of A one finds the expression of g±
in terms of n±, i.e.

g+ = 2δn−
n− − n+

g− = − 2δn+

n− − n+
(21)

and in turn the value of A

√
δ2 + A = Nδ

n− − n+
(22)

which yields the condition n+ < n−. The couplings g+ are stable, while the couplings g− are
unstable (see figure 2)

The fixed point gn = g∗ obtained previously (see equation (18)) gives g(q⊥) =
g∗(Nδq⊥,0 − 1), and hence it corresponds to the choice (n+, n−) = (1, N − 1). Consequently,
there is one stable direction and N − 1 unstable ones in the full gn space of couplings.

For a given pair (n+, n−), satisfying n+ + n− = N and n+ < n−, there are
(
N

n+

)
fixed

points, corresponding to all possible choices g(q⊥) = g+ or g−.
Another example is given by the fixed point (n+, n−) = (

N−1
2 , N+1

2

)
, with N odd and

{g(q⊥)} = (g+,
n+. . . , g+, g−, n−. . . , g−). The corresponding values of g∗,n are given by

g∗,a = 2δ
sin

(
πa
2

N−1
N

)
sin

(
πa
N

) a = 1, . . . , N (23)

which for N → ∞ implies g∗,2a = 0 and g2a+1 ∼ (−1)a/(2a + 1).

5.2. M = 2

For M = 2 the self-dual conditions gCD,n = gSC,n ≡ 2πgn are also preserved by the RG flow,
provided k0 = kn/2. The RG equations for gn are given by equation (15) with δ = 0. The
fixed points can be found by the same procedure employed earlier. They correspond to the
case n+ = n− = N/2 (N even) and g+ = −g−.
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Equations (7) have other fixed points at M = 2, which do not exist for M < 2. They
satisfy the antiself-dual constraints gCD,n = −gSC,n ≡ 2πg∗,n and

0 = (2k0 − kn)g∗,n − 1

2

∂N (g∗)
∂g∗,n

(24)

where k0 and kn are arbitrary. However, the antiself-dual constraint gCD,n = −gSC,n is not
preserved by the RG flow (7), even in the case where k0 = kn/2. The antiself-dual fixed points
(24) are also unstable.

6. Conclusions

In this paper we have presented the one-loop RG equations of the sliding Luttinger liquid
(SLL) model perturbed by charge-density-wave (CDW) and superconducting (SC) operators.

These equations have been applied to determine the phase diagram of an array of XXZ
spin chains coupled by Ising terms, finding a XY phase and an Ising phase. The XY phase is
described by a SLL model with renormalized values of the SLL parameters.

We have also found new non-gaussian fixed points of the SLL-RG equations. In the case
where the CDW and SC are relevant these fixed points are self-dual, i.e. gCD,n = gSC,n, while
for marginal operators there are self-dual and antiself-dual fixed points, gCD,n = −gSC,n.
The precise nature of these fixed points is an interesting problem to be clarified in the future
using more powerful techniques as perturbative conformal field theory and the c-theorem [10].
The generalization of our results to SLL with charge and spin degrees of freedom is rather
straightforward. Here too we expect the appearance of novel non-gaussian fixed points.
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